

Schlumberger Private - Customer Use

Schlumberger Private - Customer Use

Copyright © 2006-2018 Schlumberger. All rights reserved.

This work contains the confidential and proprietary trade secrets of Schlumberger and

may not be copied or stored in an information retrieval system, transferred, used,

distributed, translated or retransmitted in any form or by any means, electronic or

mechanical, in whole or in part, without the express written permission of the copyright

owner.

Trademarks & Service Marks

Schlumberger, the Schlumberger logotype, and other words or symbols used to identify

the products and services described herein are either trademarks, trade names or

service marks of Schlumberger and its licensors, or are the property of their respective

owners. These marks may not be copied, imitated or used, in whole or in part, without

the express prior written permission of Schlumberger. In addition, covers, page

headers, custom graphics, icons, and other design elements may be service marks,

trademarks, and/or trade dress of Schlumberger, and may not be copied, imitated, or

used, in whole or in part, without the express prior written permission of

Schlumberger. Other company, product, and service names are the properties of their

respective owners.

An asterisk (*) is used throughout this document to designate a mark of Schlumberger.

Schlumberger Private - Customer Use

Contents 1
Schlumberger Private - Customer Use

Contents

Welcome to Ocean for Techlog .. 3

Ocean for Techlog Advantage .. 3

Ocean for Techlog Architecture .. 4

Access to the Techlog data model .. 4

Ocean for Techlog UI Infrastructure ... 5

Ocean for Techlog plug-in identity and activities ... 6

Ocean framework license .. 7

Qt LGPL notice .. 7

Microsoft Visual Studio compilers supported with Ocean .. 8

Binary compatibility ... 9

Stability promise ... 9

Install and setup the Ocean for Techlog development environment .. 11

Ocean for Techlog installation .. 11

Ocean for Techlog package content ... 14

Ocean for Techlog environment variables ... 16

Test the Ocean for Techlog development environment .. 17

Writing your first plug-in ... 21

Writing the plug-in .. 21

Creating the Plug-in and Activity with Visual Studio ... 21

Inspecting the files ... 26

Plugin .. 26

Activity ... 30

Writing the algorithm code .. 30

Running the plug-in .. 33

Debug the plug-in ... 35

Auto enabled the plug-in ... 37

Techlog Viewer plug-in development (Schlumberger Internal only) 38

Techlog Viewer specific ... 38

Signed plug-ins ... 39

Create unit tests for your plug-in ... 39

Getting Started 2
Schlumberger Private - Customer Use

Creating a Test plug-in with Visual Studio ... 39

Inspecting the files ... 41

Implement the tests .. 42

Run the tests .. 48

Techlog Test Adapter .. 49

Discover tests in Techlog Test Adapter ... 49

Run tests with Techlog .. 50

Setup Techlog Test Adapter on a build agent .. 55

Create an installer for your plug-in ... 64

Deploy folders and files with the plug-in dll .. 66

Plug-in WIX installer designed with Techlog deployment options 70

Change the license agreement text of the plug-in installer ... 70

User folder versus company folder deployment ... 71

Upgrade an existing Ocean plug-in to the current Ocean release ... 73

Getting Started 3
Schlumberger Private - Customer Use

Welcome to Ocean for Techlog

Ocean for Techlog is an application development framework, part of the Ocean suite of

Schlumberger software platform frameworks, focused on wellbore data processing and
visualization. It allows the application developers to extend the functionality and

workflows of the Techlog platform.

The Ocean framework provides a productive development environment that allows the

developers to focus on science.

Ocean plug-ins are loaded on-demand by the Techlog end-user as libraries (dll) using

the Techlog module manager.

A plug-in integrates in Techlog menus and workflows like native modules. They may

appear as:

• activities started for instance through a menu item, which decide by themselves

when they are finished. They are displayed as tasks in Techlog, such that you

can monitor and possibly stop them manually.

• activities like worksteps which run within a Techlog workflow.

All the code snippets in this document have been built with Ocean for Techlog

2018.1.

Ocean for Techlog Advantage

Ocean is built in the Qt (cute) environment. Qt is a cross-platform application
framework that is widely used for developing application software with a graphical user

interface. Qt uses standard C++ but makes extensive use of a special code generator
(called the Meta Object Compiler, or moc) together with several macros to enrich the

language. For software developers, the use of Qt is seen as a productivity

enhancement.

Ocean is designed to promote code reusability for maintenance efficiency and

robustness. The Ocean Framework enables independent development of decoupled
modules. These modules can then be deployed independently of the main Techlog

application. This enhances robustness while preserving the evolution of the Techlog

platform.

Ocean also promotes the independence of data display and data access. Traditional

applications produce data and provide sophisticated rendering and interactions for this
data. This isolates them from other applications. In Ocean, data access and data

display are not handled by the same classes. This promotes code reuse and data
sharing in the same graphical environment. For instance, the Logview window

simultaneously shows data processed by Petrophysics, Acoustics, and Geology

modules. It becomes an essential tool for asset team collaboration.

Getting Started 4
Schlumberger Private - Customer Use

Ocean for Techlog Architecture

Ocean for Techlog provides lifecycle management, a runtime environment, and a public

API for plug-ins to interoperate with Techlog functionalities. Figure 1 shows how Ocean

for Techlog provides the glue between Techlog and the plug-ins.

Figure 1 Ocean for Techlog architecture: Plug-in isolation

The Ocean for Techlog architecture is based on native C++ and the Qt framework, with

plug-ins running outside of the main Techlog process. Each plug-in running in its own

process provides stability and compatibility as it:

• allows plug-ins to run in debug mode with the release version of Techlog

• avoids conflicts between third-party libraries used by the different plug-ins

• allows debugging, fixing, recompiling and rerunning a plug-in without having to

restart Techlog

• allows binary compatibility over multiple versions of Techlog and Qt

• allows isolation of Techlog in case of a crash of one plug-in

The Ocean for Techlog public API (Slb.Ocean.Techlog.dll) is the host for Ocean
applications and is the environment in which the Ocean module needs to run. The

public API provides:

• the domain objects and their data source

• the graphical environment in which the applications will display their data

• a common look and feel for all application user interface components

Access to the Techlog data model

The Ocean for Techlog API accesses these data types and properties of the Techlog

data model:

• Well

• Dataset

• Variable (Well logs)

• Data properties

• Zonation

You extend the Techlog data model by creating new data objects which are called

plug-in domain objects.

Module
Ocean

Services

Module

Techlog host process

RPC connection

Plug-in host process

Ocean

API
Plug-ins

Getting Started 5
Schlumberger Private - Customer Use

See the “Plug-in domain object” section in Ocean for Techlog Developer Guide - Plugin
Domain Object - Importer&Exporter for more information on how to implement a

plug-in domain object with Ocean for Techlog.

Ocean for Techlog UI Infrastructure

The Ocean for Techlog API does not limit itself to accessing the Data domain of

Techlog. It also provides a rich environment for integrating the Ocean module with the

graphic environment familiar to Techlog users.

The User Interface API provides functionality to customize many elements of the

Techlog window system.

Figure 2 Techlog UI extensibility

Ocean provides the capability to extend Techlog’s user interface functionality for the
GUI to be tailored to the needs of new applications. Figure 2 shows some examples of

what is customizable with the Ocean API:

• Menu bar extensions:

o Adding new tabs, groups and menus to the tbar (Techlog ribbon) or

extending native Techlog menus

• Windows:

o Adding custom windows (Qt widgets) in the Techlog workspace

• Plots:

o Adding custom plots

o Customizing native and custom plots by adding graphic items

o Adding user interactions through graphic items

o Extending the menu bar, tool bar and context menu of native and

custom plots with custom tools

• Workflow manager

Getting Started 6
Schlumberger Private - Customer Use

o Adding a custom user interface to an Ocean workstep

o Extending worktep properties (Techlog properties editor) with a

custom properties tab

• Importer and Exporter

o Extending import and export functionalities of the Techlog platform

Ocean for Techlog plug-in identity and activities

The PluginIdentity is an interface that the developer implements to declare some

information about the plug-in, its list of activities, and the menu items used to trigger

those activities.

This is the main entry point class of the plug-in and this class, compiled into the library,

provides identity and support information on the plug-in.

Once the plug-in library is deployed into the Extensions folder of Techlog (it could be

in the Techlog, Company or User folder), the end-user can enable or disable it in the
Techlog module manager accessible through the Navigation pane > Licensing

menu, and click on the Open the module manager button.

Figure 3 Techlog module manager

The module manager in Techlog manages the integration of the plug-in activities into

Techlog: it loads and queries the plug-in, creates actions that launch the plug-in

activities, and links them to menu items in Techlog.

Getting Started 7
Schlumberger Private - Customer Use

In Techlog, a module is a set of functionalities associated with a license feature. A
plug-in can contribute its activities into some Techlog modules. For instance, a plug-in

can contribute an environmental correction workstep (associated with the
environmental correction license), and can also add some geology-related processing

to the WBI (wellbore imaging) module, that is available only if the user has also a WBI

license. This means that the integration into the Techlog menus is dynamic, based on

the Techlog modules enabled by the user, and therefore subject to license checks.

Figure 4 Plug-ins contribute activities to modules (native or custom); modules can
be licensed.

All the activities of a given plug-in run in a single process, and multiple instances of a
given activity can run in that same process. This way, activities within a given plug-in

can communicate between each other (for instance, multiple worksteps forming a

workflow).

Ocean framework license

Ocean for Techlog is sold under a license feature called Ocean_Framework that

makes tlBase, tlAdvancedPlotting and tlPython modules available.

Ocean_Framework license feature gives access to the Ocean for Petrel and Ocean

for Studio development frameworks as well. You need to provide a dongle id when you

order the license through the Ocean store.

Creating or opening a Techlog project with an Ocean framework license marks the

project as tainted.

• Plots and reports accessing data from a tainted project have a watermark.

• Data export is prohibited.

• Once the project is tainted it can’t be open with a regular Techlog license.

Qt LGPL notice

The Ocean framework is distributed with Qt LGPL 5.9.1 libraries. Per requirement of
LGPL components used, you must provide with your plug-in a notice that LGPL code is

being used. Do this by deploying with your plug-in dll (plug-in folder) the LGPL.txt file

Getting Started 8
Schlumberger Private - Customer Use

and the appropriately edited README.txt file that are shipped with the Ocean

framework.

Figure 5 LGPL notice files

See the “Deploy folders and files with the plug-in dll” section on page 66 for more

information on how to deploy additional files in the plug-in folder.

Open and modify the README.txt files before deploying it with your plug-in, changing

the “Ocean for Techlog Software” with the name of the plug-in at the beginning of the

file.

Microsoft Visual Studio compilers supported with Ocean

The Ocean framework is deployed with libraries built with mvsc140 (Visual Studio

2015) compiler versions. This means that you can build your Ocean for Techlog plug-in

with only the Visual Studio compiler 2015 version.

Getting Started 9
Schlumberger Private - Customer Use

Figure 6 Ocean libraries mvsc140

Binary compatibility

The commercial Ocean APIs from a Techlog major version release are binary

compatible with all of the Techlog minor version releases. The best practice is to build

your plug-in on the Ocean Framework major version so it will run on any minor releases

of the same major Techlog version.

Note: If the plug-in depends on a new feature or a fix in a minor release you can

build your plug-in against that Ocean framework minor release, but users of

your plug-in will then have to adopt the corresponding Techlog minor
release in order to run your plug-in.

Stability promise

The stability promise says that the Ocean API will be stable for minimum two years or

two release cycles.

In order to implement new features or adopt new designs, the Ocean API may change

over time. Any APIs that are going to be removed are marked with the “Deprecated”
attribute, and include when the deprecation happened and what the replacement API

is. The API remains available as “Deprecated” for a minimum of one release cycle

before the API is fully removed, and the plug-in code must be updated in this time

frame.

For example, the userHorizontalLimit method of the LineTrackItem class was

deprecated in the 2017 release.

Getting Started 10
Schlumberger Private - Customer Use

Figure 7 Deprecated API

Any plug-ins using the deprecated userHorizontalLimit method must be changed

to use the replacement method horizontalUserLowerLimit instead.

Since you might not have the time or resources to change your plug-in immediately, in
the 2017 release both the new API horizontalUserLowerLimit and the old API

userHorizontalLimit are available. In the 2018.1 release, the old API

userHorizontalLimit is removed and is no longer available for use.

Getting Started 11
Schlumberger Private - Customer Use

Install and setup the Ocean for Techlog development environment

Ocean for Techlog installation

The Ocean development environment is setup by Ocean for Techlog installer.

The installer first checks if the Techlog version corresponding to the Ocean Framework

is installed on the user machine. The Ocean for Techlog package may be located

anywhere on the disk.

1. Browse the installation folder and click Next in the dialog window. (See Figure

8.)

Figure 8 Ocean for Techlog install location

The installer checks:

• corresponding Techlog version is installed

• Visual Studio 2015 or 2017 is installed with v140 compiler.

2. Click Next in the dialog window. (See Figure 9.)

Getting Started 12
Schlumberger Private - Customer Use

Figure 9 Techlog and VS 2015 or 2017 (compiler v140) are installed

If you have already a Techlog user folder defined on your system (TLUSERDIR

environment variable), the sample plug-ins are deployed to this folder. Otherwise the
installer deploys sample plug-ins to the user profile’s AppData in order to avoid any UAC

(User Account Control) issues.

Note: If you have already a QTDIR environment variable defined on your system
and pointing on Qt version installed on your machine, the value of this

environment variable is replaced by the path to Qt folder deployed with
Ocean for Techlog package.

See the “Ocean for Techlog environment variables” section on page 16 for more

information on how to setup Ocean environment variables.

The installer shows Visual Studio components installed with Ocean.

3. Select all components and click Install in the dialog window. (See Figure 10.)

Getting Started 13
Schlumberger Private - Customer Use

Figure 10 Visual Studio components

4. After the installation a reboot may be required to get all Ocean for Techlog

Visual Studio extensions properly installed. (See Figure 11.)

Figure 11 Setup successful

Getting Started 14
Schlumberger Private - Customer Use

Ocean for Techlog package content

The Ocean for Techlog Framework is deployed by the installer. The Ocean for Techlog

package has this folders hierarchy installed on your disk when installed:

Figure 12 Ocean for Techlog package content

Plug-ins are built on Qt. The Ocean for Techlog Framework installer comes with the Qt
LGPL 5.9.1 version. It contains QtCore and QtGui libraries (the 2 most basic Qt

libraries). Those libraries are compatible with the Visual Studio compiler v140 (Visual

Studio 2015).

The Ocean for Techlog API exposes these objects:

• Base classes: QObject (plug-in classes are QObject and in particular they

expose their event handlers as Qt’s slots methods), QWidget (a simple way of

providing a custom GUI is by implementing a QWidget)

• Basic types: QString, QVariant, QImage, QColor, etc.

• Containers: QList, QMap, QHash, etc.

• Enums: Qt::PenStyle, etc.

Google.Test 1.6.0 x64 libraries are provided with Ocean framework in order to create
an Ocean test plug-in. Google test librairies are shipped in a v140 folder to build your

test plug-in with the Visual Studio compiler v140. See the “Create unit tests for your
plug-in” section on page 39 for more information on how to create Google tests for an

Ocean plug-in.

The Ocean framework libraries are deployed in a v140 folder. It contains libraries built

with Visual Studio compiler v140 with which the plug-in links to build with the v140

compiler.

Qt 5.9.1 msvc140 (LGPL)
libraries and header files

Ocean runtime mvsc140
libraries and header files

API documentation CHM file

Natvis debug file for Ocean domain objects

Google tests 1.6.0 msvc140
librairies and header files

Getting Started 15
Schlumberger Private - Customer Use

Figure 13 Ocean plug-in examples

The Ocean framework installer deploys in the Ocean package home folder an example
folder link. The “examples (v140)” points to Visual Studio plug-in projects that link with

Ocean libraries and use the Visual Studio compiler v140. All these examples are
deployed in the %appdata%\Schlumberger\Ocean for Techlog 2018.1

directory.

The examples v140 folder includes these plug-ins:

• HelloWorld: a simple plug-in useful to test your Ocean for Techlog

development environment.

• DotNetExample: shows how to integrate a .NET library in Techlog using Qt

and Ocean framework.

• MyPlugin: some code examples of each API exposed in Ocean for Techlog

o Read and write data access

o Create a workstep, add it and run it in a Techlog workflow

o Plot examples as Logview, cross-plots, custom plots

o Custom UI examples

• GenericFileStorage: some plug-in domain objects (custom domain objects)

code samples

The plug-in examples listed previously are built in release mode and deployed by the

Ocean framework installer into the Extensions folder of Techlog User folder. You can
modify the path to the Techlog User folder through the TLUSERDIR environment

variable or directly in Techlog through the Options window dialog.

This is described in the “Ocean for Techlog environment variables” section.

The same known Extensions location can be added within Techlog’s multi-level folder

organization: Techlog and Company. This allows the plug-in to be deployed along

with the Techlog installation, or on the Company’s shared drive to reach many users.

It is not recommended for a plug-in developer to deploy a plug-in directly at the
company or Techlog level for these reasons:

• content of the Company folder is usually handled by a dedicated team within the

company

Ocean plug-ins vcxproj
linked with mvsc140 librar-
ies

Getting Started 16
Schlumberger Private - Customer Use

• Techlog extensions folder hosts plug-ins deployed with the Techlog baseline as

native Techlog modules

Ocean for Techlog environment variables

In order to build your plug-ins the Ocean installer sets at least two environment

variables:

• TechlogSDKHome is the root folder path where the Ocean for Techlog

framework is installer on your disk (e.g. D:\OceanForTechlog\SDK).

• QTDIR is used to build plug-in with Qt libraries. If you use the Qt libraries

shipped with the package in the third-party folder, set the path to %Tech-

logSDKHome%\3rdParty\Qt

To see the demo plug-ins installed with the Ocean package in the Techlog module

manager, the user folder parameter is needed to say where deployed the plug-ins are.

If there is no user folder set on your machine, the installer sets the
%AppData%\Schlumberger\Ocean for Techlog 2018.1\techlog folder as

user folder and deploys the sample plug-ins in this folder. Sample plug-in code is also
deployed in the %AppData%\Schlumberger\Ocean for Techlog

2018.1\examples

You can change it anytime through Techlog Options window (Navigation pane >

Options > Folders).

 Figure 14 Techlog user folder

Getting Started 17
Schlumberger Private - Customer Use

This parameter is set through the TLUSERDIR environment variable:

• TLUSERDIR=%TechlogSDKHome%\techlog if you want to use the User

folder as your target build area.

Close and re-open any explorer window to propagate the new environment var-
iable settings.

Test the Ocean for Techlog development environment

First test if TechlogSDKHome is properly set up and the Techlog user folder is

pointing to the Extensions folder of the Ocean for Techlog development package.

Perform these steps:

1. Run Techlog and click on the Open the module manager button from the

Navigation pane > Licensing menu:

Figure 15 Release plug-ins deployed with Ocean Framework

The module manager scans the Extensions folder of the Ocean for Techlog package
and the example plug-ins built in release mode and shipped with the Ocean framework

are displayed as in Figure 14.

2. Go to %TechlogSDKHome%\examples\v140\HelloWorld folder.

3. Open HelloWorld.vcxproj with Visual Studio and build the project in debug

x64 mode.

Getting Started 18
Schlumberger Private - Customer Use

Figure 16 HelloWorld build in debug x64

The project must build successfully and a new debug x64 library of the HelloWorld

project is generated in the Extensions folder of the Techlog user folder.

Note: In this screenshot you can see that the expected plug-in structure folder is

VendorName/PluginName/TechlogVersion/PluginVersion/. If this
structure folder is not respected the plug-in is not loaded in Techlog.

Getting Started 19
Schlumberger Private - Customer Use

Figure 17 HelloWorld debug x64 library

4. In Techlog, open the module manager, right-click on Ocean plug-ins and click

Refresh plug-ins in the context menu. The new HelloWorld debug x64

plug-in appears in the Ocean plug-ins group as in Figure 18. Since there is one

HelloWorld plug-in dll deployed by the Ocean framework installer in the same
plug-in folder (HelloWorld release plug-in v140), once the HelloWorld plug-in is

built in debug v140 and deployed, you see two HelloWorld plug-ins in the module

manager with the same name “HelloWorld”. Next to the plug-in you can click on the
information icon and check the corresponding plug-in dll name in the information

pane of the module manager.

Figure 18 HelloWorld64D plug-in

After you refresh the list of plug-ins in the module manager, if you get these error
messages for some plug-ins built in debug mode, it means that the Techlog plug-in
debug host process executable and its dependencies have not been deployed properly
in bin64/pluginhost folder of Techlog installation folder. Please re-install the Ocean
framework.
Error: Plugin 'myplugin64D.dll': can't find corresponding plugin host file.
Error: Can't launch plugin host for plugin 'myplugin64D.dll': host process not
running.

5. Enable the plug-in and click the Hello World action menu in the new HelloWorld

plug-in added in Techlog. “Hello Plugin World!” is displayed in the Techlog Output

console.

Getting Started 20
Schlumberger Private - Customer Use

Figure 19 HelloWorld64D activity running

Please review the user folder path in Techlog (or TLUSERDIR), TechlogSDKHome,

and QTDIR environment variables if one of these steps does not work properly.

One of the reasons listed may be the root cause of your issue:

• If QTDIR is not set correctly, qmake will not create the solution.
• If the plug-in dll isn’t generated in TLUSERDIR, the built plug-in will not be

loaded.
• If the plug-in folder structure Vendor-

Name/PluginName/TechlogVersion/PluginVersion/ isn’t respected, the
plug-in will not be loaded.

• If a Debug version plug-in is not loaded, the Debug version of the pluginhost is
not present in bin64/pluginhost folder of Techlog installation folder.

Getting Started 21
Schlumberger Private - Customer Use

Writing your first plug-in

The Ocean for Techlog framework provides a development and runtime environment

for wellbore centric data manipulation, interpretation, and visualization applications.
You have the ability to create workflows that interoperate with or extend the com-

mercial Techlog Interactive Suite and the capability to extend the scope of Techlog to
address new petrotechnical domains. This chapter describes the procedure of creating

a simple plug-in.

Writing the plug-in

In your first plug-in you will add a new menu item into a new tab and group in Techlog.

Clicking on this menu item will trigger an activity that prints all the well, dataset and

variable names found in the current project.

There are three main steps for creating your first plug-in. Each step will be detailed in

the sections that follow. The steps are:

1. Run the Ocean for Techlog Plug-in Wizard in Visual Studio to create the plug-in.

2. Inspect the files created by the Wizard.

3. Modify the code to add the processing logic.

Creating the Plug-in and Activity with Visual Studio

To create the project, plug-in, and activity using Visual Studio:

1. Start Visual Studio.

2. Create a new project by selecting File > New Project.

3. In the Project types area, under Visual C++ project type, select Ocean >

Techlog 2018.1.

Note: Since Ocean 2016.1, you can have two different versions installed on

the user machine (the current version and the previous version); in this case, a
2017.1 version and a 2018.1 version.

4. Select the Ocean Plug-in template.

5. Provide the name “MyFirstPlugin” for the project.

6. Click OK to start the Wizard.

Getting Started 22
Schlumberger Private - Customer Use

Figure 20 New project window

It is generally a good practice to use a descriptive plug-in name.

7. Change the name of your plug-in to “MyFirstPlugin”.

8. Change the “Vendor name”, “Plug-in version”, “Support e-mail”, “Crash dump

e-mail” and “Description” fields as appropriate (See Figure 21).

9. Note that “Vendor name”, “Plug-in name” and “Plug-in version” are mandatory

plug-in information.

10. Click Finish.

Project name

Ocean Plug-in template

Ocean Project type

Getting Started 23
Schlumberger Private - Customer Use

Figure 21 Plug-in wizard

The wizard creates the project with the main plug-in class.

1. Add a new plug-in activity by right-clicking on the project in the Solution Explorer

and selecting Add > New Item in the contextl menu.

2. In the Item types area, under Visual C++ item type, select Ocean > Techlog

2018.1.

3. Select the Ocean Activity template.

4. Provide the name “ReadDataActivity” for the activity.

5. Click Add in the dialog (See Figure 22.)

Getting Started 24
Schlumberger Private - Customer Use

Figure 22 New activity window

Note: You also have the ability to create:

• An Ocean Exporter. This adds to the project the skeleton code of a plug-in
exporter. See the “Exporter implementation” section in Ocean for Techlog
Developer Guide - Plugin Domain Object - Importer&Exporter for more

information on how to implement a plug-in domain object with Ocean.

• An Ocean File Importer. This adds to the project the skeleton code of a

plug-in file importer. See the “FileImporter implementation” section in Ocean
for Techlog Developer Guide - Plugin Domain Object - Importer&Exporter
for more information on how to implement a plug-in domain object with

Ocean.

• An Ocean MIME Importer. This adds to the project the skeleton code of a
plug-in MIME importer. See the “MimeImporter implementation” section in

Ocean for Techlog Developer Guide - Plugin Domain Object -
Importer&Exporter for more information on how to implement a plug-in

domain object with Ocean.

• An Ocean Plug-in Domain Object. This adds to the project the skeleton

code of a plug-in domain object. See the “Plug-in domain object” section in
Ocean for Techlog Developer Guide - Plugin Domain Object -
Importer&Exporter for more information on how to implement a plug-in

domain object with Ocean.

• An Ocean Workstep Activity. This adds to the project an activity class that

instantiates a Workstep in the Techlog Application Workflow Interface with
its signals and slots. See the “Workflow and worksteps” section in Ocean for
Techlog Developer Guide – Basics for more information on how to implement

an Ocean workstep.

Ocean Activity template

Ocean Item type

Activity name

Getting Started 25
Schlumberger Private - Customer Use

6. Change the “Tab title”, “Group title”, “Action menu text” and “Action menu tooltip”
fields as appropriate (See Figure 23). These fields are used to create the plug-in

menu in Techlog toolbar that triggers the Ocean activity.

7. Click Finish.

Figure 23 New activity wizard

The wizard adds the activity class to the project.

 If Intellisense is disabled in Visual Studio 2013, Ocean template items are not
accessible and an error message is raised. In Tools > Options menu of Visual Studio
2013, Disable database has to be turned off.

Figure 24 Disable database

Getting Started 26
Schlumberger Private - Customer Use

Inspecting the files

The Ocean for Techlog Wizard creates a solution named “MyFirstPlugin” with a project

named “MyFirstPlugin” in the Visual Studio Solution Explorer. The project will contain
header and source file for the Plugin class that was created, and the Activity class

(See Figure 25).

Figure 25 Example project header and source files in Solution Explorer

Plugin

The main plug-in class derives from PluginIdentity interface class.

PluginIdentity is derived from IPlugin class (plug-in interface) that exposes

these virtual methods:

class IPlugin

{

public:

 virtual void getInformation(PluginInformation

 &pluginInformation) const = 0;

 virtual void getActivities(PluginActivities

 &activities) const = 0;

 virtual void getMenu(PluginMenu &menu) const = 0;

};

Implement the plug-in identity interface to declare:

• Information about the plug-in (getInformation)

Plugin header

Activity header

Plugin source

Activity source

Getting Started 27
Schlumberger Private - Customer Use

• A list of activities (getActivities)

• Menu items used to trigger those activities (getMenu)

#pragma once

#include "tsdkpluginidentity.h"

class MyFirstPlugin : public PluginIdentity

{

 Q_OBJECT

 Q_PLUGIN_METADATA(IID TSDK_PLUGIN_INTERFACE_ID)

public:

 virtual void getInformation(Slb::Ocean::Techlog::PluginInformation&

 pluginInformation)

 const override;

 virtual void getActivities(Slb::Ocean::Techlog::PluginActivities&

 activities)

 const override;

 virtual void getMenu(Slb::Ocean::Techlog::PluginMenu& menu) const

 override;

};

These three methods must be implemented in the source file that first includes the
plug-in and activity header files and Slb::Ocean::Techlog namespace at the

beginning of MyFirstPlugin.cpp file.

#include "tsdkplugininformation.h"

#include "tsdkpluginactivities.h"

#include "tsdkpluginmenu.h"

#include "tsdkpluginmenutab.h"

#include "tsdkpluginmenuaction.h"

#include "tsdkpluginmenugroup.h"

#include "MyFirstPlugin.h"

// Please include here your activity header files

#include "ReadDataActivity.h"

// #include "Activity.h"

/*****ACTIVITIES*INCLUDE*****/

using namespace Slb::Ocean::Techlog;

The getInformation method contains properties which provide information to the

plug-in. These include vendor name, plug-in name, plug-in version, description, release
date, plug-in icon, creator, support email, crash dump email, plug-in license feature
and Techlog license feature dependencies. The contents of getInformation should

look something like:

void MyFirstPlugin::getInformation(PluginInformation& pluginInformation)
const

{

Getting Started 28
Schlumberger Private - Customer Use

 pluginInformation.setVendorName(PLUGIN_VENDOR_NAME);

 pluginInformation.setName(PLUGIN_NAME);

 pluginInformation.setVersion(PLUGIN_VERSION);

 pluginInformation.setDescription("This is my first plug-in");

 pluginInformation.setReleaseDate("20/02/2018");

 pluginInformation.setIcon(QIcon("ocean.png"));

 pluginInformation.setCreator(PLUGIN_VENDOR_NAME);

 pluginInformation.setSupportEmail("jsmith@slb.com");

 pluginInformation.setCrashDumpEmail("jsmith@slb.com");

}

Change the PLUGIN_VENDOR_NAME, PLUGIN_NAME and PLUGIN_VERSION Visual

Studio properties through “Ocean for Techlog” tab in the project Property Pages.

Figure 26 Plug-in settings

Note: The plug-in vendor name, name and version values passed to the
setVendorName, setName and setVersion functions of the

PluginInformation class have to match the plug-in structure folder

names VendorName/PluginName/TechlogVersion/PluginVersion/.

If this structure folder is not respected the plug-in is not loaded by the
Techlog module manager.

In the getActivities method, ReadDataActivity is added to the plug-in ac-

tivity. The wizard had declared for this activity a unique id (GUID) and
ReadDataActivity is identified as unique by its GUID in the list of activities of the

plug-in.

static QString
ReadDataActivityId(QLatin1String("f1007f1e-1ce3-477e-a47f-d91f4e7e1b7b
"));

Getting Started 29
Schlumberger Private - Customer Use

void MyFirstPlugin::getActivities(PluginActivities& activities) const

{

// Please fill this method with your activities with lines like this
:

 activities.add(TSDK_ACTIVITY(ReadDataActivity, ReadDataActivityId));

 // activities.add(TSDK_ACTIVITY(Activity, actionId));

 /*****ACTIVITIES*REGISTRATION*PLACE*****/

}

The wizard implements the getMenu method in MyFirstPlugin.cpp; this method is

used to add custom menus to Techlog.

Menu items are used to trigger activities.

The sequence to customize the TBar (Ribbon) is summarized using the PluginMenu

API exposed with Ocean:

1. PluginMenuTab: create new menu area for the plug-in

2. PluginMenuGroup: new menu group created and added to the new

PluginMenuTab object

3. PluginMenuAction: new menu action created and added to the new

PluginMenuGroup object and instantiated with an action id

4. PluginMenu: new PluginMenuTab object added the Techlog main menu

Figure 27 Plug-in menu classes

See the “Plug-in information and menu” section in Ocean for Techlog Developer

Guide – Basics for more information on how to extend Techlog menus.

To link ReadDataActivity with the PluginMenuAction that triggers this activity,

the wizard instantiates the PluginMenuAction object passing to the constructor the

unique identifier (GUID) of the activity declared at the beginning of MyFirst-

Plugin.cpp.

void MyFirstPlugin::getMenu(PluginMenu& menu) const

{

 PluginMenuTab tab ("PluginArea");

 tab.setTitle("My first plug-in");

 PluginMenuGroup group ("PluginGroup");

 group.setTitle("My first group");

Getting Started 30
Schlumberger Private - Customer Use

 PluginMenuAction actionReadData (ReadDataActivityId);

 actionReadData.setText("Read data");

 group.addAction(actionReadData);

 tab.addGroup(group);

 menu.addTab(tab);

}

Activity

This new action menu triggers the ReadDataActivity. This class inherits from the

AbstractActivity interface class which is the base class for any Ocean for Techlog

plug-in activity.

class AbstractActivity : QObject

{

public:

 virtual void run() = 0;

 virtual void dispose();

 ...

};

The run method is the main method of an activity, called when the user clicks on the

corresponding menu item.

Override the dispose method if you need to cleanup resources before the activity is

unloaded.

The AbstractActivity is a QObject so every activity declared in a plug-in is a

QObject, but you need to add a Q_OBJECT macro in your activity class to tell the

meta-object compiler to compile the signals and slots.

class ReadDataActivity : public Slb::Ocean::Techlog::AbstractActivity

{

 Q_OBJECT;

private:

 void run();

};

Writing the algorithm code

Once the skeleton of the plug-in has been created, you need to implement the plug-in

logic that will be triggered when the user clicks on the action menu declared in the

getMenu method of the plug-in identity class (main plug-in class).

Getting Started 31
Schlumberger Private - Customer Use

You add the custom algorithm code overriding the run method of the Abstrac-

tActivity interface.

#include "ReadDataActivity.h"

using namespace Slb::Ocean::Techlog;

void ReadDataActivity::run()

{

 // TODO: Implement the action menu logic here.

}

To write the algorithm code:

Access the APIs from the Slb::Ocean::Techlog namespace.

Code the run method. The work for the activity is completed:

Read the current main project using the Session::current().mainProject()

API. The Project class exposes a function wells, which provides navigation to the

well collections in the project. Parse through all the wells and for each well parse
through all the datasets using the datasets public function exposed in the Well

class.

Get for each dataset from the corresponding properties exposed in the Dataset class:

• Its name

• Its size; use the rowCount public method which returns the number of rows of

the dataset (and therefore of all its variables)

Print the well name, dataset name and size from the main Techlog project using
Session::current().currentWorkspace() API. The Workspace class ex-

poses the logEvent method to print message into Techlog output console with some

different output levels listed in LogLevel enumeration class:

• Debug

• Information

• Warning

• Error

For each dataset parse through all its variables using the variables public function

exposed in the Dataset class.

Get for each variable from the corresponding properties exposed in the Variable

class:

• Its name

• Its unit

• Its family

And print its property values in the Techlog Output console using the logEvent

method of the current Workspace with a LogLevel set to Information.

Getting Started 32
Schlumberger Private - Customer Use

Call stop method inherited from AbtractActivity interface class at the end of

your activity run method to stop the plug-in activity. Otherwise, the plug-in will stay in

the background until the user manually stops the plug-in task in the workspace

manager of Techlog (Figure 27) or stops Techlog.

Figure 28 Techlog workspace manager

This example shows the complete activity source code:

#include "ReadDataActivity.h"

#include "tsdklock.h"

#include "tsdkloglevel.h"

#include "tsdkvariableenums.h"

using namespace Slb::Ocean::Techlog;

void ReadDataActivity::run()

{

 // TODO: Implement the action menu logic here.

 // Lock all

 Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

 // Get the current workspace from the current session

 Workspace workspace = Session::current().currentWorkspace();

 // Get the main project from the current session

 Project proj = Session::current().mainProject();

 // Iterate on all the wells in the project

 foreach (Well well, proj.wells())

 {

 // iterate on all the datasets of the current well in the loop

 foreach(Dataset dataset, well.datasets())

 {

 // Get the name and size of the current dataset in the loop

 QString datasetName = dataset.name();

 QString datasetSize = QString::number(dataset.rowCount());

Getting Started 33
Schlumberger Private - Customer Use

 // Display well name and dataset infos in Techlog output console

 workspace.logEvent(LogLevelInformation,

 QString("Well name = %1, Dataset name = %2, Dataset size = %3")

 .arg(well.name()).arg(datasetName).arg(datasetSize));

 // iterate on all the variables of the current dataset in the loop

 foreach(Variable var, dataset.variables())

 {

 // Get the name, unit and family of the current variable in the loop

 QString varName = var.name();

 QString varUnit = var.unit();

 QString varFamily = var.family();

 // Display variable infos in Techlog output console

 workspace.logEvent(LogLevelInformation,

 QString("Variable name = %1,Variable unit = %2,Variable family = %3")

 .arg(varName).arg(varUnit).arg(varFamily));

 }

 }

 }

 // release objects locked

 lock.release();

 // Stop the plug-in activity

 stop();

}

Running the plug-in

You have just completed the modification of the run method. In this section, you will

finish building the solution and run your plug-in in Techlog.

Build your solution in Visual Studio in release 64 bit. This creates a new folder for the

plug-in in the deployment folder (Extensions folder) of the Ocean framework. This

plug-in folder contains the new plug-in library. When it starts the module manager

scans the Extensions folder and shows the new library in the list of available

plug-ins. The plug-in menu is added to Techlog when the plug-in is enabled in the

module manager. The activity runs as a separate process when the user clicks on the
action menu; at this moment the plug-in appears as a new task in the list of tasks of the

current workspace of Techlog.

Open the Techlog module manager and enable MyFirstPlugin. My first plug-in

tab is added to the Techlog native tabs. This tab contains only one group My first

group and this group contains only one action menu Read Data (Figure 29).

Getting Started 34
Schlumberger Private - Customer Use

Figure 29 Enable MyFirstPlugin in the module manager

Import the Techlog fundamentals dataset deployed with the Ocean framework

(%TechlogSDKHome%\demo-project) and click on the Read Data action menu. The

Read Data activity shows all the wells, datasets and variables in the Techlog mes-

sage log (Figure 30).

Note: Opening a Techlog project with an Ocean framework license will taint the
project.

Getting Started 35
Schlumberger Private - Customer Use

Figure 30 Read Data activity ouput messages

You have now written, built, and run your first Ocean for Techlog plug-in.

Debug the plug-in

To debug the plug-in you have to build it in debug mode. Go to the Visual Studio

solution and change the build mode from release x64 to debug x64. Still in Visual Studio
open the ReadDataActivity.cpp file and into the run method of the activity add a

breakpoint on the first line.

Re-build the solution, close and reopen Techlog.

A new library called MyFirstPlugin64D.dll is generated in the plug-in folder. Then

go back to Techlog, open the module manager and refresh the plug-in list (right click on

Ocean plug-ins). The new plug-in for debugging appears in the module manager in

the Ocean plug-ins. Disable the release version and enable the debug one.

Figure 31 Refresh plug-in list

Press the Ctrl+Alt keys and click on the Read Data action menu. The Visual

Studio Just-In-Time debugger pops up and asks you to select from the list a

Visual Studio solution debugger to attach to the plug-in host, which for a plug-in built in

64 bit is techlogpluginhost64D.exe. Select MyFirstPlugin in the list and click

Yes as shown in Figure 32.

Getting Started 36
Schlumberger Private - Customer Use

Figure 32 Debug the plug-in

The debugger stops on the first line of the run activity method where the breakpoint

has been added.

If Visual Studio complains about a Managed application please Manually choose

the debugging engines turning on this option in the Visual Studio Just-In-Time
debugger window. A popup shows up listing all the available debugger engines,

enable the Managed debugger for which version of the .NET framework you want to

debug. Unless you're debugging a .NET based plug-in, you can not attach the

.NET/Managed debugger at all.

Figure 33 Visual Studio debugger engines

Getting Started 37
Schlumberger Private - Customer Use

Auto enabled the plug-in

Enable the plug-in at Techlog start-up by adding a file named auto_enabled (no

extension) into the plug-in folder that contains the plug-in dll.

Figure 34 auto_enabled file

This file is a flag that tells Techlog to enable the plug-in in the Techlog module

manager. The auto enabled plug-in no longer appears in the module manager under
the Ocean plug-ins node and all the plug-in menus are added automatically to the

Techlog ribbon when Techlog starts.

Getting Started 38
Schlumberger Private - Customer Use

Figure 35 auto enabled plug-in not visible in module manager

Note: The Techlog plug-in host process on which the auto enabled plug-in runs

doesn’t appear anymore in the list of processes of the Windows task
manager.

Techlog Viewer plug-in development (Schlumberger Internal only)

The Techlog Viewer is software to facilitate display and interaction with data.

Techlog Viewer specific

To allow your plug-in to run on Techlog Viewer, call the
setTechlogViewerActivity function in the PluginInformation class, with

the activity ID as the parameter.

class PluginInformation

{

public:

 ...

 void setTechlogViewerActivity(const QString

 &techlogViewerActivity)

};

This is an example:

Getting Started 39
Schlumberger Private - Customer Use

static QString
ReadDataActivityId(QLatin1String("f1007f1e-1ce3-477e-a47f-d91f4e7e1b7b
"));

void MyFirstPlugin::getInformation(PluginInformation& pluginInformation)
const

{

 pluginInformation.setTechlogViewerActivity(ReadDataActivityId);

}

Note: Techlog Viewer is single well by design; developing a plug-in that uses

several wells will result in an assert being displayed in the Techlog Viewer
output window.

Signed plug-ins

Having a signature on the plug-in is not necessary for internal development only.

However a .sign file is mandatory if any external deployment is planned.

To generate the signature file, please contact the Techlog Platform Product Champion

- ERivoliier@slb.com -

Create unit tests for your plug-in

By exposing a couple of basic concepts, Ocean for Techlog enables plug-in developers

to write and run automated tests using their unit testing framework of choice while still
giving the unit tests access to the full functionality of Ocean for Techlog. The tutorial

“Unit Testing Techlog Plug-ins” in the OceanForTechlog.chm file shipped with the
Ocean package outlines how to get started and how to integrate the tests into a

continuous integration environment.

Please refer to this tutorial for more details on how to create unit tests with Ocean for

Techlog.

Creating a Test plug-in with Visual Studio

To create a Test plug-in project using Visual Studio:

Add a new test plug-in project to the solution that contains an Ocean plug-in project by

right clicking on the solution in the Solution Explorer and selecting Add > New
Project in the context menu. In the Project types area, under Visual C++ project

type, select Ocean > Techlog 2018.1. Then select the Ocean Test Plug-in

template.

Note: A test project cannot be created in an empty Visual Studio solution. The test
project wizard uses the main plug-in project in the solution.

Provide the name “TestMyFirstPlugin” for the project. Click OK to start the Wizard (see
Figure 36).

mailto:ERivoliier@slb.com

Getting Started 40
Schlumberger Private - Customer Use

Figure 36 New project window

The test plug-in wizard opens (see Figure 37).

Set these inputs:

• Class: test plug-in class name

• Vendor name: the name of the plug-in owner

• Version: the plug-in version

• Main project: select the Ocean plug-in in the solution that you want to test.

The Ocean plug-in will be a dependent library of the Test plug-in.

Click Finish in the dialog.

Ocean Test Plug-in template

Ocean Project type

Project name

Getting Started 41
Schlumberger Private - Customer Use

Figure 37 Test Plug-in wizard

Note: The path to the “3rdparty” folder of the Ocean package that contains

Google test libraries (debug and release folders) and header files (include
folder) is added to the project by the wizard.

Inspecting the files

The Ocean Test Plug-in Wizard adds a project named “TestMyFirstPlugin” in the Visual

Studio Solution Explorer. The project contains header and source file for the Test Plugin
class that was created, and the test activity and runner classes (see Figure 38.)

Getting Started 42
Schlumberger Private - Customer Use

Figure 38 Test plug-in header and source files in Solution Explorer

The Test Activity runs all the Google tests implemented in the Test plug-in through the
Test runner utility class.

Implement the tests

The Google test API provides a number of options you may consider depending on your
requirements. Refer to the official Google test online documentation at

http://code.google.com/p/googletest/.

In TestMyFirstPluginTests.cpp file, there are two types of Google tests created by

the wizard.

The first one uses the TEST macro to define the test.

TEST has two parameters: the test case name and the test name. After using the

macro, define your test logic between a pair of braces. Use a bunch of macros to

indicate the success or failure of a test.

In this example, the test creates a well in Techlog project, sets its color property to blue

and checks if the color is correctly set.

TEST(GTestName1, OkTest)

{

 Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

Test Plugin header

Test Activity header

Test Plugin source

Test Activity source

Test Runner header

Google tests header

Test Runner source

Google tests source

http://code.google.com/p/googletest/

Getting Started 43
Schlumberger Private - Customer Use

 Project project = Session::current().mainProject();

 Well well = Well::create("MyWell", project);

 Droid wellDroid = well.droid();

 well.setColor(Qt::blue);

 lock.release();

 lock = LOCK_CREATE_THEN_ACQUIRE_OR_RETURN(lock, wellDroid);

 well = DomainObject::get(wellDroid).tryCast<Well>();

 if (well.isNull())

 {

 ASSERT_FALSE(well.isNull());

 lock.release();

 return;

 }

 EXPECT_EQ(well.color(), Qt::blue);

 lock.release();

 lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

 well.erase();

 lock.release();

}

The second one uses the TEST_F macro that defines a Google test fixture.

A test fixture is a place to hold objects and functions shared by all tests in a test case.
Using a test fixture avoids duplicating the test code necessary to initialize and cleanup

those common objects for each test. It is also useful for defining commonly used

sub-routines that your tests may need.

In this example “MyWell” is initialized in SetUp method called before the test is run.

Check in the test fixture if the color of “MyWell” is blue. “MyWell” is erased in
TearDown method called after the test is run.

void TestMyFirstPluginTest::SetUp()

{

 Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

 Project project = Session::current().mainProject();

 Well well = Well::create("MyWell", project);

 well.setColor(Qt::blue);

 lock.release();

}

void TestMyFirstPluginTest::TearDown()

{

 Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

 Project project = Session::current().mainProject();

Getting Started 44
Schlumberger Private - Customer Use

 Well well = project.wells().get("MyWell");

 well.erase();

 lock.release();

}

TEST_F(TestMyFirstPluginTest, WellColor)

{

 Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

 Project project = Session::current().mainProject();

 Well well = project.wells().get("MyWell");

 if (well.isNull())

 {

 ASSERT_FALSE(well.isNull());

 lock.release();

 return;

 }

 EXPECT_EQ(well.color(), Qt::blue);

 lock.release();

}

The Ocean test plug-in project is created in a Visual Studio solution that already hosts
an Ocean plug-in project to allow the developer to make calls to the Ocean plug-in

methods in Google tests.

In this example, ReadDataActivity of MyFirstPlugin has a public method to

remove from a Techlog Variable all the missing values. Test this plug-in functionality

by calling it from a Google test in my test plug-in.

Variable ReadDataActivity::removeMissingValues(Variable variable)

{

 Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

 Dataset dataset = variable.dataset();

 Well well = dataset.well();

 Variable ref = dataset.findReferenceVariable();

 QVector<float> resultVarValues;

 QVector<float> resultRefValues;

 int rowCount = variable.rowCount();

 for (int i = 0; i < rowCount; i++)

 {

 if (variable.getFloatValue(i) != Absent::MissingValue)

Getting Started 45
Schlumberger Private - Customer Use

 {

 resultVarValues.append(variable.getFloatValue(i));

 resultRefValues.append(ref.getFloatValue(i));

 }

 }

 Dataset resultDataset =

 Dataset::create(QString("%1_result").arg(dataset.name()),

 ref.name(), ref.format(), resultVarValues.count(), well);

 Variable resultRef = resultDataset.findReferenceVariable();

 resultRef.setFamily(ref.family());

 resultRef.setUnit(ref.unit());

 resultRef.setFloatValues(resultRefValues);

 Variable resultVar =

 Variable::create(variable.name(), resultDataset,

 variable.format(), VariableTypeContinuous, 1);

 resultVar.setFamily(variable.family());

 resultVar.setUnit(variable.unit());

 resultVar.setFloatValues(resultVarValues);

 lock.release();

 return resultVar;

}

The first thing to do is to export the ReadDataActivity class when MyFirstPlugin

is built and import ReadDataActivity class when TestMyFirstPlugin is built. Do

this by adding a conditional compilation tag in C/C++ > Preprocessor >

Preprocessor Definitions to MyFirstPlugin project settings (see figure 39).

Getting Started 46
Schlumberger Private - Customer Use

Figure 39 Add conditional compilation tag in Ocean plug-in settings

Then in ReadDataActivity header file, add this code:

#ifdef T_BUILDING_ACTIVITY

define DllExport __declspec(dllexport)

#else

define DllExport __declspec(dllimport)

#endif

class DllExport ReadDataActivity : public
Slb::Ocean::Techlog::AbstractActivity

{

 Q_OBJECT;

private:

 void run();

public:

 Slb::Ocean::Techlog::Variable

 removeMissingValues(Slb::Ocean::Techlog::Variable variable);

};

The removeMissingValues function is imported by the Test plug-in; call it in a

Google test.

TEST_F(TestMyFirstPluginTest, RemoveMissingValues)

{

 Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

 Project project = Session::current().mainProject();

Getting Started 47
Schlumberger Private - Customer Use

 Variable variable =

 project.wells().get("Well1").datasets().get("DATAFULL").

 variables().get("GR");

 lock.release();

 ReadDataActivity *readDataActivity = new ReadDataActivity();

 Variable resultVar = readDataActivity->removeMissingValues(variable);

 lock = LOCK_CREATE_THEN_ACQUIRE_OR_RETURN(lock, resultVar);

 for (int i = 0; i < resultVar.rowCount(); i++)

 {

 if (resultVar.getDoubleValue(i) == Absent::MissingValue)

 {

 ASSERT_FALSE(true);

 lock.release();

 return;

 }

 }

 ASSERT_TRUE(true);

 lock.release();

}

In TearDown function the result dataset is erased after the test.

void TestMyFirstPluginTest::TearDown()

{

 Lock lock1 = LOCK_CREATE_AND_ACQUIRE_ALL(lock1);

 Dataset dataset =

 Session::current().mainProject().wells().get("Well1").datasets().

 find("DATAFULL_result");

 if (!dataset.isNull())

 dataset.erase();

 lock1.release();

}

Note: The test fixture TestWorkstep created by the Ocean Test plug-in wizard

shows how to test AWI workstep method, waiting for the end of the
processing in order to assert the results.

Getting Started 48
Schlumberger Private - Customer Use

Run the tests

Once the solution is built MyFirstPlugin and TestMyFirstPlugin are listed by the

Techlog module manager.

Open the module manager, refresh the list of plug-ins and enable TestMyFirstPlugin.

Figure 40 Enable test plug-in

GTest tab is added to the Techlog menus that contain a gTest action item from which

the test are run in the Techlog context. When the tests have finished running, the user

opens the result tests log file directly from the Techlog output console (see figure 41).

Getting Started 49
Schlumberger Private - Customer Use

Figure 41 Gtest plug-in runs in Techlog context

You can also run the tests directly from Visual Studio through the Techlog Test Adapter.

See the “Techlog Test Adapter” section on page 49 for more information on how to run

plug-in unit tests with the Techlog Test Adapter.

Techlog Test Adapter

Ocean plug-in tests can be run directly from Visual Studio development environment in
the Techlog context using the Techlog Test Adapter. The aim of this chapter is to

describe Techlog Test Adapter functionalities and what are different options offer to the
plug-in developer to run Ocean plug-in tests through the Techlog Test Adapter directly

into the Visual Studio development environment or on a build agent as VSTS or

TeamCity.

Discover tests in Techlog Test Adapter

Once Google tests are implemented in the Ocean test plug-in, tests can be discovered

by the Techlog Test Adapter and displayed in the Visual Studio Test Explorer as follow:

1) Set the Default Processor Architecture option to “x64” in TEST > Test

Settings > Default Processor Architecture menu

2) Open the Visual Studio Test Explorer window from the TEST > Windows menu

3) Build the Visual Studio solution

Getting Started 50
Schlumberger Private - Customer Use

Figure 42 Tests in Test Explorer

Run tests with Techlog

When tests are run from the Visual Studio Test Explorer, the Techlog Test Adapter has
now the capability to start Techlog to run plug-in unit tests in the Techlog context with

some Techlog data. This only happens if the Techlog Autorun option is enabled in the

Ocean > Techlog Test Adapter menu.

Figure 43 Techlog Autorun option

1) Techlog version

Through the Techlog Version option in the Ocean > Techlog Test Adapter menu

the plug-in developer has the ability to control against which version of Techlog tests

have to be run.

Note: Techlog version older than 2016.2 aren’t supported by Techlog Test
Adapter 2018.1.

Getting Started 51
Schlumberger Private - Customer Use

Figure 44 Techlog Version option

By default, the Techlog Version is set to “Auto”. This means that the Techlog Test

Adapter tries to find by itself the appropriate Techlog version to run Ocean plug-in
tests. The Techlog version auto detection is done through properties that can be set to

the Visual Studio solution at different priority levels.

Note: Techlog Test Adapter starts the Techlog with the right version, run the
Ocean plug-in tests and close Techlog when all tests have been run.

 Ocean tests are run in Techlog through the TestRunnerPlugin that is shipped in
debug and release modes with the Ocean framework. If one of these plug-ins is ac-
tivated and saved in a favorite Techlog profile, then Techlog Test Adapter wouldn’t be
able to enable the right TestRunnerPlugin at the Techlog start and run Ocean tests.
So please don’t activate by default a TestRunnerPlugin in your favorite Techlog
profile.

Getting Started 52
Schlumberger Private - Customer Use

The Techlog Test Adapter is looking first to a .runsettings file set to the Visual Studio

solution. A .runsettings file is an XML file that tells the Techlog Test Adapter to run a
Test plug-in dll with a given Techlog version and project. The expected format is shown

below:

<?xml version="1.0" encoding="utf-8"?>
<RunSettings>
 <RunConfiguration>
 <TargetPlatform>x64</TargetPlatform>
 </RunConfiguration>
 <OceanSdk>
 <Techlog>
 <TestAdapter>
 <TestAssembly Name="TestMyFirstPlugin.dll"
 TechlogProjectPath="C:/Techlog-Projects/fundamentals_18_1.tlp"
 TechlogVersion="2018.1"/>
 <TestAssembly Name="TestMyFirstPlugin2.dll"
 TechlogProjectPath="C:/Techlog-Projects/fundamentals_17_1.tlp"
 TechlogVersion="2017.1"/>
 </TestAdapter>
 </Techlog>
 </OceanSdk>
</RunSettings>

Figure 45 .runsettings file example

Note: The file name doesn’t matter, provided you use the extension
“.runsettings”.

The .runsettings file is added to the Visual Studio solution through the Test Settings

> Select Test Settings File menu item.

Figure 46 Add .runsettings file to the Visual Studio solution

The second place where the Techlog Test Adapter searches for Techlog version and

project path to run Ocean plug-in tests is at the Test plug-in project properties level.

From the Ocean for Techlog properties page you can define the Techlog project

path and the Techlog version.

Getting Started 53
Schlumberger Private - Customer Use

Figure 47 Test plug-in project properties

2) Code coverage

Through the Code Coverage option in the Ocean > Techlog Test Adapter menu
the plug-in developer has the ability to enable / disable the code coverage of plug-in

unit tests. This option is available in Visual Studio Enterprise only and it is disabled by

default.

Note: Do not use Visual Studio native code coverage. This isn’t compatible with
Techlog Test Adapter.

Figure 48 Code Coverage option

Getting Started 54
Schlumberger Private - Customer Use

The Techlog Test Adapter produces at the end of the unit testing a .coverage file that

contains detailed results on the plug-in code covered by the unit tests.

In order to get the Techlog Test Adapter code coverage running properly in Visual
Studio, you have to set the Profile property to “Yes” in the project Properties >

Linker > Advanced property page.

Figure 49 Profile property

The .coverage file is read by Visual Studio and displayed into the Code Coverage

Results window.

Figure 50 Code Coverage results in Visual Studio

3) Others Techlog Test Adapter options

Property Description

Dependency When the Dependency Resolver option is enabled, the

Getting Started 55
Schlumberger Private - Customer Use

Resolver missing plug-in dependencies are copied to test as-

sembly folder before running tests.

Enable by default.

Verbose Mode The Verbose Mode is an option that when is enabled

provides additional details in the Test output console of

Visual Studio as to what the Techlog Test Adapter is

doing.
Figure 51 Other Techlog Test Adapter options

Setup Techlog Test Adapter on a build agent

Through the Techlog Test Adapter you have the ability to run plug-in tests on a build

agent as VSTS or TeamCity. This way you can setup a continuous integration

environment for your plug-in through a build agent that is responsible to:

1) Build the plug-in solution

2) Run the unit tests associated to the plug-in through the Techlog Test Adapter

a. With a targeted Techlog version

b. With a targeted Techlog project or a temporary project

3) Get the plug-in code covered by unit tests through a summary XML file

The coverage summary XML file format is shown below:

<?xml version="1.0"?>
<CoverageReadResult xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <FullCoveredMethodsNumber>2021</FullCoveredMethodsNumber>
 <TotalMethodsNumber>5284</TotalMethodsNumber>
 <MethodCoveredLines>5519</MethodCoveredLines>
 <MethodNotCovaredLines>12905</MethodNotCovaredLines>
 <BlockCovered>10815</BlockCovered>
 <BlockNotCovered>27731</BlockNotCovered>
</CoverageReadResult>

Figure 52 Code coverage XML format

1) Techlog Test Adapter environment variables

In order to configure the build agent with all Techlog Test Adapter options describe

previously in this document for the Visual Studio environment, the Techlog Test

Adapter provides environment variables listed in the table below:

Variable Short description

TLVERBOSEMODE “Verbose Mode” option in the Visual Stu-

dio menu.

Default value: “False”

TLCODECOVERAGE “Code Coverage” option in the Visual

Studio menu.

Default value: “False”

Remark: Only available if Visual Studio

Enterprise is installed on the build agent.

Getting Started 56
Schlumberger Private - Customer Use

TLAUTORUN “Techlog Autorun” option in the Visual

Studio menu.

Default value: “True”

TLVERSION “Techlog Version” option in the Visual

Studio menu.

Default value: “Auto”

Remark: If the value is “Auto” or empty,

the Techlog version is resolved from a

.runsettings file.

TLPROJECTPATH Absolute path to a Techlog project to be

used to run tests (only if TLAUTORUN is

set to “True”).

Default value: empty

Remark: If the value is empty, the

Techlog project path is:
1) resolved from a .runsettings file.

2) not set and tests are run with a temporary

project

TLXMLCOVERAGEFILEPATH Absolute path to a summary XML file that

contains unit testing code coverage re-

sults.

Default value: empty

Remark: Only available if Visual Studio

Enterprise is installed on the build agent

and TLCODECOVERAGE is set to “True”.
Figure 53 Techlog Test Adapter environment variables

2) Build machine prerequisites

To create and configure build definition on a VSTS build agent to run plug-in tests

through the Techlog Test Adapter 2018.1 follow the steps below.

Note: It is also possible to run Ocean plug-in tests with the Techlog Test Adapter
on a TeamCity build agent.

Applications listed below need to be installed on the build machine:

• VSTS Build agent

• Visual Studio Enterprise 2015 or 2017 (with compiler v140)

• Schlumberger licensing tool with a valid Techlog license

• Techlog 2016.2, 2017.1, 2017.2 or 2018.1 (depending on which Techlog

version you want to run the tests)

• Ocean for Techlog 2018.1

Note: It is only described in this document how to setup a build definition with the

Techlog Test Adapter on a VSTS build agent. It is also possible to run

Ocean plug-in tests with the Techlog Test Adapter on a TeamCity build
agent.

Getting Started 57
Schlumberger Private - Customer Use

3) VSTS build definition setup

Below are detailed steps explaining how to create and configure a build definition on
VSTS that build the plug-in, run the tests in Techlog using Techlog Test Adapter and

compute code coverage results.

1) Connect to the VSTS page and go to Build and Release menu

2) Select the Definitions tab and click on New definition button

Figure 54 Create a new build definition

3) Select the source control where the Ocean plug-in solution is hosted.

VSTS Git source:

a. Select a Team project in the drop down list to access VSTS Git reposi-

tories

b. Select a Repository in the drop down list that that contains the plug-in

solution

c. Select the Default branch

d. Click on the Continue button

Figure 55 VSTS Git source

TFVC source:

e. Enter the Server path to the repository that contains the plug-in solution

f. Enter the Local path where this plug-in solution has to be copied on the

build machine

Getting Started 58
Schlumberger Private - Customer Use

g. Click on the Continue button

Figure 56 TFVC source

4) In the build definition template page select an Empty process

Figure 57 Build definition template page

5) The build definition is now created and you have to provide some settings to the

process that will be run on the build agent:

a. Provide a Name for the build definition

b. Select an Agent queue in the drop down list

Getting Started 59
Schlumberger Private - Customer Use

Figure 58 Build definition process settings

6) The build definition is created in VSTS with a default phase named “Phase 1”. This

is under this phase that you will add tasks that which plug-in solution to build in

Visual Studio, the plug-in tests to run with the Techlog Test Adapter for a given

Techlog version / project and compute code coverage results.

7) Add a Visual Studio Build task to the phase that is responsible to build the Ocean

plug-in Visual Studio solution.

Figure 59 Add a Visual Studio Build task

8) Define Visual Studio Build solution parameters as:

a. Display name

b. Solution: relative path from repository root of the solution

c. Visual Studio Version

d. MSBuild Arguments: /p:Platform=x64

e. Platform: x64

f. Configuration: release or debug

Getting Started 60
Schlumberger Private - Customer Use

Figure 60 Visual Studio Build solution parameters

9) An optional step is to add an Extract Files task to the phase that is responsible to

unzip a Techlog project hosted in your Ocean plug-in solution and used to run tests

in Techlog.

Figure 61 Add an Extract Files task

10) Define Extract Files parameters as:

a. Display name

b. Archive file patterns: relative path to the zip file from the plug-in so-

lution repository

c. Destination folder

Getting Started 61
Schlumberger Private - Customer Use

Figure 62 Extract Files parameters

11) Add a Visual Studio Test task to the phase that is responsible to run the Ocean

plug-in tests through the Techlog Test Adapter.

Figure 63 Add a Visual Studio Test task

12) Define Visual Studio Test parameters as:

a. Display name

b. Select tests using: Test assemblies

c. Test assembies: relative path to test plug-ins output dll that contains

Ocean unit tests. The file paths are relative to “Search folder” parameter

d. Search folder: folder to search for “Test assemblies” (relative path to the

local build folder)

e. Test platform version

f. Settings file: path to .runsettings file to use with the tests that contains

for each test assembly a Techlog version and a Techlog project against

Ocean unit tests have to be run

g. Path to custom test adapters: directory path to the custom Techlog

Test Adapter (e.g. C:\Program Files (x86)\Microsoft Visual Studio

15.0\Common7\IDE\Extensions\Slb.OceanSdk.Techlog.TestAdapter)

(only if the “Test platform version” is set to “Visual Studio 2017”)

h. Build platform: set to x64

i. Code coverage enable: this property is disabled as we don’t want to use

VSTS code coverage but the code coverage provided with the Techog Test

Adapter

j. Other console options: /UseVsixExtensions:true /Platform:x64 (only if

the “Test platform version” is set to “Visual Studio 2015”)

 If the Build platform property isn’t set to x64 or the .runsettings
file doesn’t contain the tag <TargetPlatform>x64</TargetPlatform>
then it is safer to add the /Platform:x64 to the Other console options
property.

Getting Started 62
Schlumberger Private - Customer Use

Figure 64 Visual Studio Test parameters

13) Add a Publish Build Artifacts task to the phase that is responsible to publish in

artifacts of the build agent the results of the plug-in unit tests code coverage.

Getting Started 63
Schlumberger Private - Customer Use

Figure 65 Add a Publish Build Artifacts task

14) Define Publish Build Artifacts parameters as:

a. Display name

b. Path to publish: the folder path to publish the code coverage results on

the build machine or on the repository

c. Artifact name

Figure 66 Publish Build Artifacts parameters

15) Add Techlog Test Adapter environment variables to the build definition (see Error! R

eference source not found.). Build definition environment variables are avail-

able in all build definition tasks created previously.

a. Click on Variables tab of the build definition

b. Add Techlog Test Adapter environment variables to the page that the build

agent needs to use to run Ocean plug-in tests in Techlog

Getting Started 64
Schlumberger Private - Customer Use

Figure 67 Build definition environment variables

16) Click on Save & queue button to queue the build definition on the build agent.

4) Unit test results

The build definition runs on the build agent and creates a build result that can be

visualized in the Builds tab of the Build and Release menu. When you click on a

recently built item in the Queued list, it shows you the unit test results as below:

Figure 68 Build definition unit test results

Note: As you can see in Figure 67 the code coverage summary XML file generated
by the Techlog Test Adapter isn’t exploitable directly by VSTS and can’t be
displayed in this dashboard.

The code coverage summary XML file is created by the Techlog Test Adapter in the

build artifacts.

Figure 69 Coverage result file in build artifacts

Create an installer for your plug-in

The Ocean for Techlog Visual Studio templates deployed by Ocean WIX installer
provide a project template that allows plug-in developers to package their plug-ins

through a WIX installer. You must have WIX 3.8 or a higher version installed to use the

Ocean Plug-in installer template.

Getting Started 65
Schlumberger Private - Customer Use

To create a plug-in installer project using Visual Studio:

Add a new plug-in installer project to the solution that contains the Ocean plug-in

project that you want to package by right clicking on the solution in the Solution
Explorer and selecting Add > New Project. In the Project types area, under Visual

C++ project type, select Ocean > Techlog 2018.1. Then select the Ocean Plug-in

Installer template.

Note: An installer project cannot be created in an empty Visual Studio solution.
The installer project wizard uses the main plug-in project in the solution.

Provide the name “MyFirstPluginInstaller” for the project. Click the OK button to start

the Wizard. (See Figure 69.)

Figure 70 New project window

The plug-in installer wizard appears (See Figure 70).

Set these inputs:

• Title: title of the Ocean plug-in to be installed

• Company: company name that owns the Ocean plug-in; displayed during
plug-in installation

• Description: description of the Ocean plug-in; displayed during plug-in in-

stallation

• Projects: select the Ocean plug-ins in the solution to package in the installer

Click Finish in the dialog.

Note: The plug-in dll and its resources built or copied at the post build in the

project output directory are packaged in the plug-in WIX installer by the
Ocean plug-in installer wizard.

Ocean Project type

Ocean Plug-in Installer template

Project name

Getting Started 66
Schlumberger Private - Customer Use

Figure 71 Plug-in installer wizard

The WIX installer project for “MyFirstPlugin” is added to the Visual Studio solution. Build

the project; a MSI installer is generated in output of the build. Use it to deploy the

plug-in in Techlog to the plug-in users.

Figure 72 Plug-in installer project

Deploy folders and files with the plug-in dll

You may have to deploy additional files with your plug-in dll that follow a particular

folder hierarchy. The WIX installer created through the Ocean plug-in installer template

allows you to add those files by editing the Product.wxs file.

Getting Started 67
Schlumberger Private - Customer Use

Consider a plug-in activity that creates a Logview from a layout template stored at the

plug-in level.

void SetupLogviewActivity::run()

{

 Lock lock = LOCK_CREATE_AND_ACQUIRE_ALL(lock);

 Project project = Session::current().mainProject();

 Workspace workspace = Session::current().currentWorkspace();

 // Apply the template for all the wells in the projects

 QList<Well> wells = project.wells().toList();

 LogviewTemplate logviewTemplate =

 LogviewTemplate::get(StorageLevelPlugin, "Well9_short");

 Logview logview =

 Logview::create(workspace, logviewTemplate, wells);

 lock.release();

 stop();

}

The layout template Well9_short.xml must be deployed with the plug-in dll in a

folder named “LayoutTemplates”.

The Ocean plug-in installer wizard dialog allows you to do this.

Browse to a folder on the disk and add it or add a virtual folder that is created at plug-in

installation time.

1. Add “LayoutTemplates” folder to plug-in folder

Getting Started 68
Schlumberger Private - Customer Use

2. Add the Well9_short.xml file to new “LayoutTemplates” folder

You can also delete folders and files with the Remove button. When you are

happy with folder structure and files that will be deployed with the plug-in, click Finish
in the dialog. Then the Ocean plug-in installer is added to the Visual Studio solution with

folders and files added to Product.wxs file.

After the fact, add some additional folders and files by manually modifying the

Product.wxs file:

1. Add the file to the <Feature></Feature> block tags in the Product.wxs file.

<Feature
Id="ProductFeature" ConfigurableDirectory="EXTENSIONS" Description="
$(var.description)" Title="$(var.mainpluginname)" Level="1">
 <ComponentRef Id="Component" Primary="yes" />
 <ComponentRef Id="IniFile" Primary="yes"/>

Getting Started 69
Schlumberger Private - Customer Use

 <ComponentRef Id="MyLayoutTemplate" Primary="yes"/>
</Feature>

2. Then declare inside the <Directory></Directory> block tags of the plug-in

dll a <Directory></Directory> block with the name attribute value equal to

the name of the folder that you want to deploy with the plug-in dll
(“LayoutTemplates” in this example). Add the file, here Well9_short.xml, inside
the new <Directory> </Directory> block tags using the previously declared

component id.

<Directory Id="PluginVersion" Name="$(var.mainpluginversion)">
 <Compo-
nent Id="Component" Guid="80dd22d7-5e83-4967-88f3-9fec434a6b83">
 <Condition>TECHLOGPATH</Condition>
 <File Id="fil1649aa340c434607ae9771ceeebeb051" Source="..\MyFirs
tPlugin/x64/$(var.Configuration)/MyFirstPlugin.dll" />
 </Component>
 <Directory Id="LayoutTemplates" Name="LayoutTemplates">
 <Component
 Id="MyLayoutTemplate" Guid="80dd22d7-5e83-4967-88f3-9fec434a6b84">
 <Condition>TECHLOGPATH</Condition>
 <File Id="fil1649aa340c434607ae9771ceeebeb052"

Source="..\MyFirstPlugin/x64/$(var.Configuration)/Well9_short.xml" /
>
 </Component>
 </Directory>
</Directory>

3. The WIX installer searches for the file in the output directory of Visual Studio

plug-in project.

Well9_short.xml file must be:

• copied to the Visual Studio plug-in project directory

• added to the Visual Studio project (Add > Existing item in context menu of

the project)

• copied from the project directory to the output directory by adding this

command line in Post-Build Event of project properties:

copy "Well9_short.xml" "$(OutDir)Well9_short.xml" /Y

Figure 73 Post-Build Event in Ocean plug-in properties

Getting Started 70
Schlumberger Private - Customer Use

Plug-in WIX installer designed with Techlog deployment options

A plug-in end user can deploy a plug-in at the Techlog, Company or user level.

This deployment option is clearly exposed in the destination folder window of the WIX

installer wizard as shown in the screenshot below:

Figure 74 Techlog deployment options

Change the license agreement text of the plug-in installer

A plug-in installer is created with a default Lorem ipsum text that shows up as the

plug-in license agreement text during the plug-in installation.

Getting Started 71
Schlumberger Private - Customer Use

Figure 75 Default “Lorem ipsum” license agreement text

In order to replace the default Lorem ipsum text by your plug-in license agreement

text, you have to:

1) add a License.rtf file that contains you license agreement text at the root folder of

the WIX project

2) add the License.rtf file to the WIX project in the Visual Studio solution

3) build your solution

User folder versus company folder deployment

A plug-in is uniquely identified in the module manager by its key

VendorName/PluginName/TechlogVersion/PluginVersion.

This information is set in the code of the plug-in (plug-in information of the main plug-in
class) and the plug-in information has to match the plug-in folder structure:

Extensions/VendorName/PluginName/TechlogVersion/PluginVersion.

See “Writing the plug-in” section on page 21 for details on how to declare plug-in

information.

If two plug-ins with the same key are deployed in user and company folders, they show

up both in the Techlog module manager.

You can see in the information pane of the Techlog module manager at which level the

plug-in is deployed.

Getting Started 72
Schlumberger Private - Customer Use

Figure 76 Level where the plug-in is deployed

Getting Started 73
Schlumberger Private - Customer Use

Upgrade an existing Ocean plug-in to the current Ocean release

It isn’t a prerequisite to uninstall previous Ocean framework versions before installing

the 2018.1 release. You may have several Ocean framework versions installed on your

machine.

If you open an Ocean plug-in project created with Ocean template and wizard 2017.1,

you can upgrade this project to 2018.1 by right clicking on the project in the Visual

Studio Solution Explorer. Then right click Upgrade Ocean for Techlog Project

in the context menu.

Figure 77 Upgrade Ocean for Techlog project

The upgrade window opens, asking you to confirm the project upgrade.

Getting Started 74
Schlumberger Private - Customer Use

Figure 78 Upgrade window

Then an information message warns you about changes that have been applied to the

Ocean for Techlog plug-in project.

Figure 79 Upgrade information message

The Ocean for Techlog properties are automatically upgraded to the new release during

the upgrade process. Those properties are displayed in Configuration Properties >

Ocean for Techlog page of the project Property Pages.

Getting Started 75
Schlumberger Private - Customer Use

Figure 80 Ocean for Techlog project properties

In this tab you have access to three groups of properties:

1) Compilation settings: MocUserSettings is a set of definitions which are passed

to MOC.exe at build-time.

2) Plug-in settings: allow you to give mandatory plug-in information values like
plug-in name, version and vendor name. Changing those values will deploy the

plug-in output dll with the corresponding plug-in structure folder at post-build time.

3) Version: this group of properties allows you to handle the Ocean for Techlog
binary versions (TechlogSDKHome) and Qt binary versions (QtDir) with which you

want to build your plug-in. If you create an Ocean project plug-in from a 2018.1
template or upgrade an Ocean plug-in project to the 2018.1 release, the default

values for those properties are the TechlogSDKHome and QTDIR environment

variable values. But if you change those values through the Ocean for Techlog
properties editor, the new values are only set at the project level and the

environment variable values remain unchanged. Through the “Techlog version”
you control the Techlog version folder name of the plug-in structure folder. You can

also change at the project setting level the path to the Techlog user folder
(TLUSERDIR). This is where the plug-in structure folders and the plug-in dll are

generated at post-build time.

